Analysis of equivalence relation in joint sparse recovery
نویسندگان
چکیده
The joint sparse recovery problem is a generalization of the single measurement vector problem which is widely studied in Compressed Sensing and it aims to recovery a set of jointly sparse vectors. i.e. have nonzero entries concentrated at common location. Meanwhile lp-minimization subject to matrices is widely used in a large number of algorithms designed for this problem. Therefore the main contribution in this paper is two theoretical results about this technique. The first one is to prove that in every multiple systems of linear equation, there exists a constant p∗ such that the original unique sparse solution also can be recovered from a minimization in lp quasi-norm subject to matrices whenever 0 < p < p∗. The other one is to show an analysis expression of such p∗. Finally, we display the results of one example to confirm the validity of our conclusions. keywords: sparse recovery, multiple measurement vectors, joint sparse recovery, null space property, lp-minimization
منابع مشابه
Dynamic equivalence relation on the fuzzy measure algebras
The main goal of the present paper is to extend classical results from the measure theory and dynamical systems to the fuzzy subset setting. In this paper, the notion of dynamic equivalence relation is introduced and then it is proved that this relation is an equivalence relation. Also, a new metric on the collection of all equivalence classes is introduced and it is proved that this metric is...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملON THE COMPATIBILITY OF A CRISP RELATION WITH A FUZZY EQUIVALENCE RELATION
In a recent paper, De Baets et al. have characterized the fuzzytolerance and fuzzy equivalence relations that a given strict order relation iscompatible with. In this paper, we generalize this characterization by consideringan arbitrary (crisp) relation instead of a strict order relation, while payingattention to the particular cases of a reflexive or irreflexive relation. The reasoninglargely ...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.01850 شماره
صفحات -
تاریخ انتشار 2017